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19. ABSTRACT (Continued)

Aiighly relativistic. We provide several examples of current interest to demonstrate the use of this classifica-
tion. The results have been tested against the dispersion relationship given by Tajima, Jones and Shoucri.
Effects of a finite beam are discussed.
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A HYBRID MODE AND A CLASSIFICATION
OF BEAM PLASMA INSTABILITIES

I. Introduction

There is considerable renewed interest in the old subject of the electron

stream interactions with plasmas. While the classical two stream instability

is quite well-understood, much of the current effort has been placed on

intense relativistic electron beams. Examples of areas of interest where such

a study is warranted include: electron beam heating of a dense plasma for

inertial confinement fusion driver; laser-plasma beat wave acceleration of

particles to ultra high energies;2' electron beam propagation under sub-

atmospheric conditions 4,5 and in the case of a modified betatron accelerator,6

the proposed method7 of injection and extraction of the electron beam by

creating a plasma channel; etc.

The diverse areas mentioned above encompass a multi-dimensional parameter

space which spans over many orders of magnitude. Depending on the objective

of an investigation, a theoretical analysis of beam-plasma interaction is'

necessarily limited in scope, as the electromagnetic effects, the relativistic

effects, and the coupling between the perpendicular and parallel motions,

among different species of particles, compete with each other. In this paper,

we attempt to classify various beam-plasma instabilities 8-2according to the

electron beam energy and the electron beam density (relative to the background

plasma density). Domains of instability mechanisms are determined, within

each of which the instability growth rate and the minimum axial wavelengths

for the instabilities are displayed. Such a classification then provides an
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immediate determination of the nature and the importance of a particular

instability, once the beam energy, the beam density, and the background plasma

density are given. This would allow more ready refinement of the theory, if

necessary, as the dominant physical mechanisms are isolated in such a

classification.

During our survey of the parameter space, we identified an instability,

which we termed a hybrid instability. This instability is important for the

propagation of a long, thin relativistic electron beam into a tenuous

background of ions. The phase (and group) velocity of the wave-along the

beam, in the laboratory frame, is 1/2 of the speed of light. The growth rate

is proportional to the quarter powers of the electron density and of the ion

density, and inversely to the quarter powers of beam energy and of the ion

mass.

The hybrid instability could be important in the "ion focus regime",

where an intense electron beam propagates in a plasma channel, which is either

preformed or self-generated. If the plasma channel is tenuous, the beam

electrons electrostatically eject the plasma electrons from the beam path,

leaving behind the plasma ions which then guide the beam electrostatically.

An example where this hybrid instability is possibly a dominant one, is when

a preformed plasma channel is generated to extract an electron beam in a

modified betatron configuration, after the electron beam is fully accelerated.

(See examples below).

En this paper, we shall first present a simple physical argument which

leads to the dispersion relationship of the hybrid mode for a slab model. It

turns out that the simple dispersion relationship thus derived is an excellent

approximation to the full dispersion relatlonshlp, 10-12 which incorporates all

electromagnetic and relativistic effects. We find that the dispersion



relationship is also applicable to a cylindrical beam of small, but finite

cross sections [see Appendix].

To place the hybrid mode in a proper perspective, in Section III we

provide the classification scheme, based on the beam energy and beam density.

This classification identifies the domains for the hybrid mode, the Weibel

mode,13 and the classical two stream instabilities. In that section, we also

furnish a simple derivation of the Weibel mode for a relativist..c electron

beam. The growth rates and the minimum axial wavelengths for the various

instabilities are catalogued for easy reference. Several examples of current

interest are given in Section IV to demonstrate the ready utilization of the

classification scheme established in Section III.

The basic assumptions are now stated. We assume that the external

magnetic field is unimportant. This is certainly true in the ion focus regime

mentioned above. The plasma and the beam are assumed collisionless. The

plasma is at rest, and both the plasma and the beam are cold. It is assumed

that there is no plasma return current. One may argue that such an assumption

is valid in the ion focus regime where the background plasma density is low.F

The classification is based on a model of infinite uniform beam plasma

system. The latter assumption is relaxed in the Appendix. In fact, if

k -1r 2 > k 2where k is the perpendicular wave number, k is the axial wave±b

number and rb is the electron beam radius, the slab model provides an adequate

description for global modes of a sharp boundary model if k r is taken as a

suitably quantized number greater than unity in order of magnitude.'0'11 it

is within this context that our classification of instabilities is made. We

shall further discuss these basic assumptions, and the limitations they

impose, in the last section.



II. The Hybrid Mode

The dispersion relationship for the hybrid mode, together with the

physical picture, is now presented. For simplicity, we consider a one-

dimensional model. The approach is very similar to the one used to describe

simple plasma oscillations.

Consider an infinitely uniform electron beam propagating in the z-

direction with constant velocity vo . The beam is highly relativistic, i.e.,

' >> 1 (1)

where v a (1 - v2 /c2)1/2 is the relativistic mass factor and c is the speed of

light. The beam is cold and is embedded in a uniform background of ions of

considerably lower density. The ions, of mass mi , are also cold and are

motionless in equilibrium. We assume that there is a force balance for the

ions and for the electrons in equilibrium. For the electrons the almost

perfect cancellation between the self electric field and the self magnetic

field, (for Y >> 1) together with the weak ionic background, would make a

perfect equilibrium of cold electronic flow plausible. For the ions, because

of their mass, we simply ignore whatever ionic motions which may have resulted

from the equilibrium electric field. If the characteristic time of the

instability is short compared with the free-fall time of the ions, one may

then ignore the external forces on the ions in the equilibrium states, to the

lowest approximation. This in fact can be shown to be the case through a

Vlasov description of the ionic responses. The effects of these equilibrium

ion motions may then be evaluated in a qualitative manner by, for example,

pretending that there is a "temperature" of the ions for the equilibrium.

Here, we just assume, for convenience, that such temperature is zero. Simply

stated, we assume that the unperturbed equilibrium fields are unimportant.





m = + leI[Ele + Eli]. (5)

Since we assume that there is no ionic motion in equilibrium, the Lorentz

force is absent for the ions [cf. Eq. (5)]. Further simplification is

possible by using Eq. (1) and by the assumption that the background plasma is

tenuous. By Eq. (1), Ele + (V /C) x Ble ' 0 since the self electric field and

the self magnetic field generated by the electronic dipole layer cancelled to

2
order 1/Y , and Y is large [cf. Fig. 1; also, Eqs. (2), (3)]. The latter

assumption permits us to ignore Eli in comparison with Ele in Eq. (5). Thus,

Eqs. (4) ano (5) are simplified to read

2
Y ome - 1ejEl = 47rje 1 n p~ (6)

oe = e I le +4 P1 2nbe 7

2mii leIEle = 
1tirle1 nb~e . (7)

For a perturbation with dependence exp (iwt - ikz), e = - (W -kv and
2 e

- 2 Using these expressions in Eqs. (6) and (7) and multiplying the

resultant equations, we obtain the dispersion relationship for the hybrid mode

2= 2 (8)

where

W2 47re 2n /m. (9)

p p1

wb 2 4 4e 2 nb/meY. (10)
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The instability growth rate may readily be obtained from a square root of Eq.

(8):

1 -k 2v2)1/2 (11)W kv k± i (WP 4 k v
2 o p"wbi4.~ 0

This dispersion relationship has been shown to be an excellent approximation

to that for a thin beam which is highly relativistic (5 - 1). The latter is

given by Eq. (All) of the Appendix. The solution to Eq. (All) is slightly

more general than (11) and is sketched in Fig. 2, where the real part w andr .

2 2 2 2 2the imaginary part w are shown. In Fig. 2, w /W bllW P2 2Y . Equation

(All) reduces to Eq. (11) in the limit B = 1.

Several points for the hybrid mode are noteworthy: (a) The phase and

group velocity of the unstable waves equal to v /2 - c/2. (b) The instability
0

is absent if the axial wavelength A satisfies the inequality

<w ic-2 (12)k H kH

Here, we have used a subscript H to denote the critical axial wavelength for

the hybrid mode. (c) The instability growth rate, for k << kH, is given by

Wi. W - (13)
i. iH p bi

which is independent of k and of k. (d) We may more precisely state what we

meant by a "tenuous" ionic background. For E1 il << IEleI , as we have assumed

in deriving (7) from (5), we must have nbJeI >> npj~i [cf. (2)]. This

inequality becomes

7
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- is accelerated towarl 1, as explained In the previous paragraph, E overtakes I

at a later time, as shown in Fig. 3(b).

In Fig. 3(b), > Now sheet E is not subject to any perturbed

*force, to the order we are considering, since Ee and Be canceled to order

2
*1/Y , and Eiis confined only within I and 0. Thus once E surpasses I, as in

*Fig. 3(b), E moves with a constant velocity. However, I is accelerated toward

-E, because of Ee (again, Ei is small because of the low background ion

*density). Thus, at a later time I overtakes E, as shown in Fig. 3(c), and the

whole sequence repeats. Thus the electron sheet E and the ion sheet I

gradually deviate from their original position 0, and this is essentially the

- basic mechanism which drives the hybrid mode.

The above physical description is in some respect similar to the one

* given for simple plasma oscillations (w =w ).For example, the argument does
p

*not require a detailed specification of the wave numbers, of the beam and

-plasma dimensions and of the profiles. One may then be tempted to conclude

* that the hybrid instability is a fundamental one as long as Y >> 1 and
0

%w p 2/2>> 1. In fact, we shall show in the Appendix that essential.ly the same

dispersion relationship (8), or (11), is obtained for a cylindrical beam with

a sharp boundary profile.

We postpone to the next two sections for a discussion of the relationship

of this hybrid mode and other beam-plasma instabilities.

III. A Classification of Beam Plasma Instabilities

To place the hybrid mode in the "general picture" of beam plasma

*interactions, we have conducted a limited search of the literature in which

the relativistic and electromagnetic effects have been treated. We found that

* the recent work of Tajima, 10 Jones,1 and Shoucri12 are the closest to the



S . . .. .. .- .. .

present one. The studies of Jones and Tajima are more general, as they

included bounded systems in cylindrical geometries. Their results firmly

establish the validity of the use of a slab model, if the beam radius rb (or

thickness T) is sufficiently small, And if the perpendicular wave number k inI

the slab model is to be replaced by p/rb, where p is a quantized number of

order unity, (or larger for higher radial modes). Shoucri 1 2 considered only a

slab geomtry, but he brought out an interesting point regarding the coupling

of electromagnetic and relativistic effects. We postpone to Section V for a

* brief discussion of other literature.

The three authors mentioned in the previous paragraph produced, among

other things, the same dispersion relationship. For example, the dispersion

relationship given in Eq. (20) of Shoucri'2 is equivalent to the dispersion

10relationship (40) of Tajima, which is in turn equivalent to that given in p.

111931 of Jones, who also noted such a correspondence. This dispersion

relationship, for the slab model, reads

BE=C (15)

* where

"2 2 2 2
2B - w - /ll (16)

B=1-wl/

2 k 2  2 k2 2  2 2 2 2
E - 1 - k2/w - 1 - (w + wb2)/W (17)

C kc W ( - bL )/w 2  (18)

*" Here, B represents the classical beam plasma interaction, E the

electromagnetic mode, and C the coupling of the two. In Eqs. (16)-(18), w

10

- 10

•°q
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is the frequency, k is the axial wave number, k is the perpendicular waveI

number, 9 = w - kv , Wp is the plasma frequency of the background,
2 4 2nme/.b en/M Y, and w bl- /Y. Note from Eq. (18) that C - 0 if

k 0, or if w = 0, or in the non-relativistic limit, in which case

W bll= Wbj* Since the dispersion relation (15) is derived under the

assumption that the unperturbed force on each of the particle species is

negligible, hereafter wp may stand for w pi or wpe depending on the case of

interest.

The dispersion relationship (15) D(w,k) v BE - C = 0, in the limit

k /r >> k, is characterized just by two dimensionless parameters:
± b

2 28 v/c and n a wbll /W . The first parameter reflects the beam energy (Eb)

"* and n the density ratio of the beam and the background plasma. This can be

seen by normalizing all frequencies with respect to u , and all wave numbers

with respect to w p/v . It is for this reason that we are able to classify the

beam plasma instability according to just two parameters 8 and n, over a wide

range as discussed below.

E.tensive numerical and analytical studies of the dispersion relationship

(15) lead to the classification shown in Fig. 4. In this figure, the n - Eb

plane is divided Into five domains. In each of these domains, the growth

rates of the instability scale differently but the instability mechanism can

be described simply. For example, the hybrid mode examined in the previous

section falls in Domain V of Fig. 4. We shall now document the approximate

growth rates for these domains. We should also point out that the boundaries

between the domains are not sharp. The main use of this classification is

then to provide an immediate determination 3f the instability of a given

system, once the beam energy and the Dackgr3und plasma drnsities are given.

11



Some examples will be given in the next section. In all these examples, the

approximate formulas given below have been favorably compared with the full

dispersion relationship (15).

(A) BY < 1 (i.e., Eb < 212 keV).

If BY < 1, the beam is essentially non-relativistic. In this case,

C a 0 in (15), and the dispersion relationship for the classical two-stream

instability

2 2
W - bll o (19)
2 2

is readily recovered from (15), regardless of the value of k . We subdivideI
2 2

into two cases: n W /W < 1 and n > 1.

(Al) < < I (DOMAIN I)

In this case, the background plasma density much exceeds the beam

density. This is the typical case treated in most text books. The dispersion

diagram is shown in Fig. 5. According to (19), the peak growth rate W.(max),

the cutoff wave number kc, and wr are given by

Wi(max) - p(/3/2) (n/2)1/3 - 0.687nl/3Wp (20a)

kc - (W /V )1 (3/2) nI1/3  (20b)
p 0

wr kvo. (20c)

12
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This instability is absent for k > k *The case (Al) is labeled as I in Fig.
c

4; the dominant Instability being the weak beam classical two stream

instability.

(A2) > 1. (DOMAIN II)

In this case, the background plasma has a lower density than the beam.

The dispersion relationship (19) may also be analyzed using the standard

technique. The dispersion diagram is sketched in Fig. 6. The peak growth

rate, w.(max), the cutoff wave number kcs and wr for the unstable mode are:
1.r

W(max) - 0.687 w pn1/6 (21a)

1/2 132n/6
k = (W p/V 0 )[n (32) ] (21b)

r (kv 0)/ni. (21c)

The scalings given in (21) are quite different from those in (20). Note,

however, that (20) and (21) yield the same result If n - 1. Equations (21)

characterize the parameter space labeled II in Fig. 4, where the beam

dominated classical two stream instability is prevalent.

The dispersion relationship (19) is well-known. It is unnecessary to

furnish here a simple physical picture to support the derivation of (19). We

now turn to the case where the relativistic effects are important.

(B) BY > 1 (i.e., Eb> 212 key).

When the beam energy is sufficiently high, the relativistic effects, the

electromagnetic effects, and parallel and transverse motions are all coupled.

13



For BY > 1, we may subdivide into three domains according to n < 1/82 Y2 ,

2 2< <22 2 2
1/82Y < n < a2Y 2 , and n > 2Y2 . These three domains are labeled III, V, IV,

respectively. The approximate dispersion relationships, together with the

growth rates and kc, for each of these domains are displayed as follows.

(BI) n < 1/62Y2 (DOMAIN III)

This case corresponds to a tenuous relativistic electron beam embedded in

a dense background plasma. Extensive numerical solution to (15) suggests

2 2that, in this case, we may approximate B - 1 - wp/W

2 2 2 2 2 2222 2 22
E (k + W p + --I)/w and C = - 8 kLc pWbi /W • Then Eq. (15) yields

2 22 22 2

1 pc Pbj (22)
2 22 2 2 22W k c + wp + wb w

i p b.L

which, in the limit k2c2 >> 2 + 2 reduces to

2 22 2

1 W p wpb L .  (22a)
2 22W W

If we normalize w - w/w, fl = Q/wp, Eq. (22a) may be written as

1 2y2 n (22b)
1 - --2 (22b

where the parameter B2 Y 2n enters. Recall that we have in this subsection

assumed 82y2n < 1.

The dispersion curve according to (22) is sketched in Fig. 7. The

maximum growth rate wi(max), the critical kc, and wr are given by

14
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WI(max) = 0.687 (62y2r) T/3p (23a)

k - (wp/vo)[1 (3/2)(8 2Y2n)1 /3] (23b)

ft kv (23c)r o

In (23a) and (23b),

2 2
k c

k1 2 ] (24)

n~.2 2 2 2 2

which reduces to n in the limit k2, 2c >> p + 2 Note from Fig. 7 that as

O + 0, + B/w p which is non-zero. This mode has been called a Weibel

mode,1 3'1 4 and is predominant in Domain III in the classification shown in

Fig. 4.

(B2) > 2Y (DOMAIN IV)

This limit is the opposite as the case (B1). [cf. replace n by 1/n]. In
2 2 -k2c2 +2 + b2)/2,.

this limit we may approximate B - 1 - wbll/1 2, E (k C + W + W)/W
bl p bj.

2222 2 22 
C k- Bkc W and (15) becomes

2 22 22 2)k c 8 wbnl ( W. p bi.
1 - bJ ____ (25)

2 2 2 2 2 2 2
a k c + w + w W

For simplicity, we further assume k 2c2 >> + w..2 to reduce (25) to an evenSt e e 5 o e

simpler form which is independent of k

2 22 2

- p b (26)

2 22

15
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The solution to (26) is sketched in Fig. 8; the maximum growth rate

Wi(max), kc, and w r are given by

Si(max) = 0.687 wp (BY)2/3 I 1/6 (27a)

kc - (v Wp )n 1/2 + (3/2)(BY)2 / 3 ni/ 6] (27b)

W <<I kv (27c)mr 2< vo "

The dispersion relationship (26) appears to be new. To gain some

understanding, we derive it simply as follows. Upon dropping Bli in Eq. (4),

we obtain

Ym ece - -eI[Ele + (vo/c)Ble + Eli]

or equivalently

-YmeQ 2 e= -eI(E /Y2 + E) (28a)
e ele/ 0 ii

where we have used the fact that the self field Ele is canceled by the Lorentz

force (vo/c) Ble by the factor 1/Y2 . [cf. Fig. 1]. Again, neglecting Eli in

comparison to Ele in (5), we have

- mI2 W 2 IeIEle. (28b)

We now use the expressions Ele - 4wielnb e and Ei = - 4leln p i in (28a) and

(28b). The dispersion relation

16
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2 2 2
Wbli p Wb_

1-- (29)
2 2 2

is then readily obtained from (28a), (28b). Aside from the factor 2 (which

has been assumed to be closed to unity in this subsection), Eq. (29) is

identical with (26). This simple derivation may be used to provide a physical

explanation of the instability, similar to that given in Fig. 3. Note that

while this derivation is very similar to that given for the hybrid mode, the

scalings of the growth rates for the two instabilities are different [cf.

Figs. 2, 8; Eqs. (13), (26)].

(B3) 1/0B Y 2< n < B Y 2(DOMAIN V)

2 2 2 B 2

The remaining domain is 1/B Y <n<BY . This is labeled as Domain V

in Fig. 4. The dominant instability for this parameter space is the hybrid

mode studied in detail in Section II. The simple dispersion relation was

given by Eq. (13) and sketched in Fig. 2 of that section. We note, from the

simple derivation given in Sec. II, that this domain is characterized by

Y >> 1 and w 2~ /w 1 >>Icf. Eqs. (1) and (114)]. The condition w bw 2 W2> 1 is

2 2
just n >> 1/aBY when aB 1.

Finally, we note that the clas sification shown in Fig. 14 is symmetrical

about n~ - 1. This is reasonable if one views the beam plasma interaction in a

frame moving at the mean speed of the two species. We also stress that the

simple dispersion relations given for Domains (I) - (V) are strongly supported

by the numerical computation of the full dispersion relationship (15).

IV. Some Examples

In this section, we give a few examples on the use of the classification

schemes. These examples are drawn from laser accelerations of ultra-high

17



energy particles, 2'3 the plasma assisted injection and extraction of electrons

into a modified betatron. 7 The simple formula and Fig. 4 provide ready

characterization of the instability, in terms of the growth rate and the

critical axial wave number (above which the system is stable). One example is

given to each of the Domains III, IV, V. [Domains I and II cover the more

familiar plasma interactions with a non-relativistic electron beam, and will

not be considered further in this section].

A. Laser Beat Wave Acceleration
2

Consider the acceleration of an electron beam whose energy is 10 MeV.

Let rb = beam radius - 0.5 mm., Ib = beam current - 0.1A. This beam is

embedded in a background hydrogen plasma, of density np = 101 6/cm3 ,

say.3 These parameters yield Y = 20.6, w = 'Wpe = 5.64 x 1012 rad/sec.,
W l- 3.11 x 10 7 ad/see, w 6.4 x 108 rad/sec. Then n= w 2  2

Wbll = 0rdsc bi c. l p

= 3.03 x 10- 11 which is much less than 1/Y2B2 . 2.36 x 10-3 . Thus the

parameters lie within domain III.

The growth rates and critical wave numbers may be evaluated using Eqs.

(23). We arbitrarily take k = I/rb. Then (24) yields n n k LC/wP

0.106n - 3.22 x 10-12 . Thus, Eq. (23) yields wi = 2.03 x 10 sec For a

pulse length Tp = 3.33 x 10- 10 sec, wITp = 0.68, which is the total number of

e-folds during the beam pulse. Thus, the instability is very mild. The half

wavelength at kc is A c/2 = ir/k = 0.017 cm, according to (23b).

The instability growth rates [cf. (23a)] is proportional to the 1/3 power

of Ib P. Thus the conclusion given in the previous paragraph regarding the

unimportance of the instability remains valid for a substantially higher beam

current, or at a higher beam energy.

18



B. Plasma Assisted Injection of Electron Beam in a Modified Betatron

Configuration

The modified betatron configuration6 consists not only of the usual

betatron magnetic field but also a strong toroidal magnetic field. To inject

an electron beam into the modified betatron, it is proposed to create a plasma

channel 7 into which the electron beam propagates. In the ion focus regime,

W w.
p pi.

To determine the extent of the beam ion interaction, consider, for

example, an electron beam of energy 1 MeV, of beam current I KA and beam

radius of 0.5 cm. Then 6 = 0.941, Y = 2.957, nb 2.7 x 10 /c.c.,

bll = 5.7 x 109 rad/sec., wbj = 1.69 x 1010 rad/sec. If the ion channel

is formed by benzene gas, mi = 78 x 1840 m . Take n. - ne, then
e117 2b 2 03.

Wp . Wpi 7.4 x 10 rad/sec. Thus = 2 2 5.8 x 1 Together with
bilp

Eb = 1 MeV, we note that the parameters lie within Domain IV [cf. Fig. 4]. If

2 2 2 2we arbitrarily take k = I/rb, then k c > W + W and the dispersion

relation (26) is a good approximation to (25).

The growth rate and kc are given by Eqs. (27a) and (27b). Using the

parameters given in the previous paragraph, we deduce w. = 4.3 x 108 sec - I, so

that during the time scale Tp - 20 ns, say, corresponding to a single turn

injection time of the NRL modified betatron, 15 the total number of e-folds of

the instability is w T = 8.6. This suggests that the beam type Weibel mode
I p

may be marginally important since the above analysis excludes stabilizing

influence such as betatron oscillation, external magnetic field, random ion

motion, 17 the anharmonic property of the channel, and the convective nature of

the mode. Thus, the total number of e-folds is expected to be somewhat less

than 8.6, and, as a result, be tolerable. From (27b), we have c /2 = /kc

- 13.4 cm. This provides an estimate of the axial extent of the mode.

19



C. Plasma Assisted Extraction of Electron Beam in a Modified Betatron

Configuration

The idea of using a plasma channel may also be adopted for the extraction

of an electron beam, after the latter has completed the acceleration phase in

a modified betatron configuration.7 Note that such an idea is especially

attractive for beam extraction, because the contamination of the chamber would

not become an issue.

To determine the interaction between the post-accelerated beam and the

channel ions, consider, again, an electron beam of current 1 KA, beam radius

rb = 0.5 cm, this again yields nb = 2.7 X 101 1/c.c. If benzene is used, and

if n. . nb, then w = W 7.4 x 107 rad/sec as in Subsection IV B. If theI. bp p.

energy of the beam is about 50 MeV, say, (Y - 100), then wbll = 2.9 x 107

rad/sec and w = 2.9 x 10 rad/sec. The parameter n w 0.152.bl = bll/ p

These values of (Ebp n) lie within Domain V in Fig. 4. Thus, the post-

accelerated beam is subject to the hybrid mode.

The growth rate and kc for the hybrid mode are given by (11). Using the

above parameters, we have w wp b= 4.6 x 108 sec - . This growth rate is

similar to that in Subsection B. However, here X /2 - w/k c Im, which isc C

quite long. In fact, for parameters similar to the NRL modified betatron, the

length of the channel is always less than 60 cm, by geometrical

considerations. The relatively mild growth and, more importantly, the long

wavelength nature of the hybrid mode, render this method of beam extraction

attractive.

V. Discussions

In this paper, we classify beam plasma interaction according to just two

parameters: the beam energy and the beam-plasma density ratio. The

dispersion relationship is fully electromagnetic and fully relativistic, and

20



has been given by various authors. Here, we divide the parameter space Into

several domains, in each of which the instability growth rate and axial scale

lengths are simply given. We stress the simplicity, the exposition of the

instability mechanism, and the ease with which such a classification may be

applied to a particluar situation. Examples are given.

While the classification given in this paper provides an immediate

assessment of the instability growth rates over a wide range of beam

energy and of number densities, the following limitations should be kept in

mind. (a) The role of external magnetic fields have been ignored. In the ion

focus regime, this assumption may be argued to be valid. However, in many

other cases, this assumption cannot be made and the classification given here

can no longer be used. Intuitively, the magnetic field may be ignored if

2 2
02 « <<W ., where Q . and w.i are respectively the relati;vistic cyclotron

frequency and the relativistic plasma frequency of the jth species. (b)

Perhaps equally restrictive is our over-simplification of the equilibrium

fields. The influence of the self fields on this classification remains to be

determined. (c) When the densities are high, collisional effects, which have

been neglected in this paper, may become important. (d) We have ignored

betatron oscillations of the beam electrons, and Possible ionic motions in the

unperturbed states. These effects are likely to be stabilizing. Ce) We have

not characterized the absolute or convective behavior of the instabilities.

From previous experience with beam instabilities, we anticipate that the

instability is mildly absolute, whose time asymptotic response behaves like

exp (ta), where o < a < 1, typically. However, inclusion of betatron

oscillations would tend to make the instabilities convective.9 (f) We

conjecture that the details Of the beam profiles are not very crucial in the

classification of beam instabilities. Experience suggests that the radial
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Fig. 1 - Electron sheet E and ion sheet I displaced
from their equilibrium position 0.
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Appendix

HYBRID MODE IN A FINITE BEAM

In this appendix, we consider in some detail the interaction between a

relativistic electron beam, of radius rb, and a background plasma, the latter

being infinite in extent. We focus on the hybrid mode. We show that the

growth rate given by Eq. (13) is also applicable when the beam is finite.

This study provides additional confidence in the replacement of

k by p/rb , where p is some quantized number of order unity, or higher.

When the equilibrium self fields are ignored, the interactions of the

electron beam and a cold background plasma are described by the following

coupled differential equations:t
1

1 d {r dE6 2 itB
1 d r } 'CE - z dp (Al)
r dr L6 2 T z z 2 dr

r rK

1d dB 2 B -iXE

dr zdB r2 6 z B r 2 dr* (A2)
r rc

Here, Ez and Bz are the rf field components of the TM and TE modes, which are

coupled if the azimuthal mode number Z * 0. Small signal dependence of the

form f(r) exp (iwt - i9e - ikz) has been assumed. The symbols in (Al) and

(A2) are defined as

K2 2 2 /2 k2 2 /C2 ( 2 + 2 2 (A3)w:- k w/ ; 6 - - w c + (w b )/ c

p bjL

2 2 2

£ I - 2 / w 2  2 / 2 ;p b ]-. ( A 14 )

p bll 2 2
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2 2
kcw w (kc - wv /c)

b 0 . (A5)
2 w

6c

Consider first a local analysis of (Al). Take Z = 0 for convenience and

replace d/dr by - ik . Then Eq. (Al) yields

I
- k2 €/ - £ - 0 (A6)

.1

which can easily be shown to be the dispersion relationship (15). It is also

quite clear that, in general, I/rb provides a natural transverse scale length

of the perturbations. In fact, one may use a normalized variable x = r/rb to

render (Al) and (A2) dimensionless.

For general L, and for a constant beam density up to r = rb, (and zero

for r > rb), a transcendental dispersion relationship, 1 1 in terms of Bessel

functions, may be obtained from (Al) and (A2). This dispersion relationship

may be obtained by requiring that Ez and Bz be continuous at r = rb, butz z

E and B be discontinuous by an amount which is to be computed from anz z

integration of (Al) and (A2), due to a discontinuity in p. This dispersion

relationship may be simplified considerably under the assumption

2 2 2 2 2 2W bil, W p <<o W--b < .2 (A7)

rb

In this case, it reads

0 (A8)

where

32

." .- ." .-.- J ..'o ,..- , ... ".'. "-%-, " .. • o,.,-...".....,.-."...........-.........-.',.-.........



iW r /C
bb 

(A9)

/ 22 2 22 -v1- w 8 W W "
p bj

and IAI is the v-th zero of the Bessel function J To the lowest order in

W r /c [cf. (A7)], (A9) then yields

bp b 22 2

The solution to (AO) is

w= kVo i (B p: 22 /2 (All)

which is just the dispersion relation (11) for the hybrid mode [aside from the

factor S, which has been assumed to be closed to unity in the derivation of

(11)]. The dispersion relationship (All) is sketched in Fig. 2.

Finally, we remark that as long as (A) is valid, the growth rate given

by the local analysis is anticipated to be valid also for a diffuse beam

profile. This has also been pointed out by Tajima. I0
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